deepinsight.core package¶
Submodules¶
deepinsight.core.base module¶
-
class
deepinsight.core.base.
Computable
¶ Bases:
object
-
add_read_partitions
(spec)¶ Add a partition or range of partitions to read.
The spec argument must be given in the partition spec format. You cannot manually set partitions when running inside a Python recipe. They are automatically set using the dependencies.
-
full_name
¶
-
set_write_partition
(spec)¶ Sets which partition of the dataset gets written to when you create a DatasetWriter. Setting the write partition is not allowed in Python recipes, where write is controlled by the Flow.
-
-
deepinsight.core.base.
get_data_home
()¶
deepinsight.core.dataset module¶
-
class
deepinsight.core.dataset.
Dataset
(name, project_id=None, ignore_flow=False)¶ Bases:
object
This is a handle to obtain readers and writers on a deepinsight Dataset. From this Dataset class, you can:
- Read a dataset as a Pandas dataframe
- Read a dataset as a chunked Pandas dataframe
- Read a dataset row-by-row
- Write a pandas dataframe to a dataset
- Write a series of chunked Pandas dataframes to a dataset
- Write to a dataset row-by-row
- Edit the schema of a dataset
-
add_read_partitions
(spec)¶ Add a partition or range of partitions to read.
The spec argument must be given in the partition spec format. You cannot manually set partitions when running inside a Python recipe. They are automatically set using the dependencies.
-
full_name
¶
-
get_config
()¶
-
get_dataframe
(columns=None, sampling='head', sampling_column=None, limit=None, ratio=None, infer_with_pandas=True, parse_dates=True, bool_as_str=False, float_precision=None)¶ Read the dataset (or its selected partitions, if applicable) as a Pandas dataframe.
Pandas dataframes are fully in-memory, so you need to make sure that your dataset will fit in RAM before using this.
Keywords arguments:
columns – When not None, returns only the given list of columns (default None)
limit – Limits the number of rows returned (default None)
sampling – Sampling method, if:
- ‘head’ returns the first rows of the dataset. Incompatible with ratio parameter.
- ‘random’ returns a random sample of the dataset
- ‘random-column’ returns a random sample of the dataset. Incompatible with limit parameter.
sampling_column – Select the column used for “columnwise-random” sampling (default None)
ratio – Limits the ratio to at n% of the dataset. (default None)
infer_with_pandas – uses the types detected by pandas rather than the dataset schema as detected in DeepInsight. (default True)
parse_dates – Date column in dataset schema are parsed (default True)
bool_as_str – Leave boolean values as strings (default False)
Inconsistent sampling parameter raise ValueError.
Note about encoding:
- Column labels are “unicode” objects
- When a column is of string type, the content is made of utf-8 encoded “str” objects
-
static
get_dataframe_schema_st
(schema, columns=None, parse_dates=True, infer_with_pandas=False, bool_as_str=False)¶
-
get_files_info
(partitions=[])¶
-
get_last_metric_values
(partition='')¶ Get the set of last values of the metrics on this dataset, as a
deepinsight.ComputedMetrics
object
-
get_location_info
(sensitive_info=False)¶
-
get_metric_history
(metric_lookup, partition='')¶ Get the set of all values a given metric took on this dataset
Parameters: - metric_lookup – metric name or unique identifier
- partition – optionally, the partition for which the values are to be fetched
-
get_writer
()¶ Get a stream writer for this dataset (or its target partition, if applicable). The writer must be closed as soon as you don’t need it.
The schema of the dataset MUST be set before using this. If you don’t set the schema of the dataset, your data will generally not be stored by the output writers
-
iter_dataframes
(chunksize=10000, infer_with_pandas=True, sampling='head', sampling_column=None, parse_dates=True, limit=None, ratio=None, columns=None, bool_as_str=False, float_precision=None)¶ Read the dataset to Pandas dataframes by chunks of fixed size.
Returns a generator over pandas dataframes.
Useful is the dataset doesn’t fit in RAM.
-
iter_dataframes_forced_types
(names, dtypes, parse_date_columns, chunksize=10000, sampling='head', sampling_column=None, limit=None, ratio=None, float_precision=None)¶
-
iter_rows
(sampling='head', sampling_column=None, limit=None, ratio=None, log_every=-1, timeout=30, columns=None)¶ Returns a generator on the rows (as a dict-like object) of the data (or its selected partitions, if applicable)
Keyword arguments: * limit – maximum number of rows to be emitted * log_every – print out the number of rows read on stdout
Field values are casted according to their types. String are parsed into “unicode” values.
-
iter_tuples
(sampling='head', sampling_column=None, limit=None, ratio=None, log_every=-1, timeout=30, columns=None)¶ Returns the rows of the dataset as tuples. The order and type of the values are the same are matching the dataset’s parameter
Keyword arguments:
- limit – maximum number of rows to be emitted
- log_every – print out the number of rows read on stdout
- timeout – time (in seconds) of inactivity after which we want to close the generator if nothing has been read. Without it notebooks typically tend to leak “DMC” processes.
Field values are casted according to their types. String are parsed into “unicode” values.
-
static
list
(project_id=None)¶ Lists the names of datasets. If project_id is None, the current project id is used.
-
list_partitions
(raise_if_empty=True)¶ List the partitions of this dataset, as an array of partition specifications
-
raw_formatted_data
(sampling=None, columns=None, format='tsv-excel-noheader', format_params=None)¶ Get a stream of raw bytes from a dataset as a file-like object, formatted in a supported output format.
You MUST close the file handle. Failure to do so will result in resource leaks.
-
read_metadata
()¶ Reads the dataset metadata object
-
read_schema
(raise_if_empty=True)¶ Gets the schema of this dataset, as an array of objects like this one: { ‘type’: ‘string’, ‘name’: ‘foo’, ‘maxLength’: 1000 }. There is more information for the map, array and object types.
-
set_preparation_steps
(steps, requested_output_schema)¶
-
set_write_partition
(spec)¶ Sets which partition of the dataset gets written to when you create a DatasetWriter. Setting the write partition is not allowed in Python recipes, where write is controlled by the Flow.
-
write_from_dataframe
(df, infer_schema=False, dropAndCreate=False)¶ Writes this dataset (or its target partition, if applicable) from a single Pandas dataframe.
This variant does not edit the schema of the output dataset, so you must take care to only write dataframes that have a compatible schema. Also see “write_with_schema”.
Encoding note: strings MUST be in the dataframe as UTF-8 encoded str objects. Using unicode objects will fail.
arguments: df – input panda dataframe.
-
write_metadata
(meta)¶ Writes the dataset metadata object
-
write_schema
(columns, dropAndCreate=False)¶ Write the dataset schema into the dataset JSON definition file.
Sometimes, the schema of a dataset being written is known only by the code of the Python script itself. In that case, it can be useful for the Python script to actually modify the schema of the dataset. Obviously, this must be used with caution. ‘columns’ must be an array of dicts like { ‘name’ : ‘column name’, ‘type’ : ‘column type’}
-
write_schema_from_dataframe
(df, dropAndCreate=False)¶
-
write_with_schema
(df, dropAndCreate=False)¶ Writes this dataset (or its target partition, if applicable) from a single Pandas dataframe.
This variant replaces the schema of the output dataset with the schema of the dataframe.
Encoding node: strings MUST be in the dataframe as UTF-8 encoded str objects. Using unicode objects will fail.
-
class
deepinsight.core.dataset.
DatasetCursor
(val, col_names, col_idx)¶ Bases:
object
A dataset cursor that helps iterating on rows.
-
column_id
(name)¶
-
get
(col_name, default_value=None)¶
-
items
()¶
-
keys
()¶
-
values
()¶
-
-
class
deepinsight.core.dataset.
IteratorWithTimeOut
(iterator, timeout=-1)¶ Bases:
object
-
check_timeout
()¶
-
generator
¶
-
iterate
()¶
-
iterator
¶
-
state
¶
-
timeout
¶
-
touched
¶
-
wake_me_up
¶
-
-
class
deepinsight.core.dataset.
Schema
(data)¶ Bases:
list
-
deepinsight.core.dataset.
create_sampling_argument
(sampling='head', sampling_column=None, limit=None, ratio=None)¶
-
deepinsight.core.dataset.
none_if_throws
(f)¶
-
deepinsight.core.dataset.
parse_local_date
(s)¶
-
deepinsight.core.dataset.
unique
(g)¶
deepinsight.core.dataset_write module¶
-
class
deepinsight.core.dataset_write.
DatasetWriter
(dataset)¶ Bases:
object
Handle to write to a dataset. Use Dataset.get_writer() to obtain a DatasetWriter.
Very important: a DatasetWriter MUST be closed after usage. Failure to close a DatasetWriter will lead to incomplete or no data being written to the output dataset
-
active_writers
= {}¶
-
static
atexit_handler
()¶
-
close
()¶ Closes this dataset writer
-
write_dataframe
(df)¶ Appends a Pandas dataframe to the dataset being written.
This method can be called multiple times (especially when you have been using iter_dataframes to read from an input dataset)
Encoding node: strings MUST be in the dataframe as UTF-8 encoded str objects. Using unicode objects will fail.
-
write_row_array
(row)¶
-
write_row_dict
(row_dict)¶ Write a single row from a dict of column name -> column value.
Some columns can be omitted, empty values will be inserted instead.
Note: The schema of the dataset MUST be set before using this.
Encoding note: strings MUST be given as Unicode object. Giving str objects will fail.
-
write_tuple
(row)¶ Write a single row from a tuple or list of column values. Columns must be given in the order of the dataset schema.
Note: The schema of the dataset MUST be set before using this.
Encoding note: strings MUST be given as Unicode object. Giving str objects will fail.
-
-
class
deepinsight.core.dataset_write.
FakeDatasetWriter
(dataset)¶ Bases:
object
For tests only
-
write_dataframe
(df)¶
-
-
class
deepinsight.core.dataset_write.
RemoteStreamWriter
(id, waiter)¶ Bases:
threading.Thread
-
close
()¶
-
flush
()¶
-
read
()¶
-
run
()¶
-
write
(data)¶
-
-
class
deepinsight.core.dataset_write.
StreamingAPI
¶ Bases:
object
-
init_write_session
(request)¶
-
push_data
(id, generator)¶
-
wait_write_session
(id)¶
-
-
exception
deepinsight.core.dataset_write.
TimeoutExpired
¶ Bases:
Exception
deepinsight.core.debugging module¶
-
deepinsight.core.debugging.
debug_sighandler
(sig, frame)¶ Interrupt running process, and provide a python prompt for interactive debugging.
-
deepinsight.core.debugging.
install_handler
()¶
deepinsight.core.dt_pandas_csv module¶
-
class
deepinsight.core.dt_pandas_csv.
DTCSVFormatter
(obj, path_or_buf=None, sep=', ', na_rep='', float_format=None, cols=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression=None, quoting=None, line_terminator='n', chunksize=None, tupleize_cols=False, quotechar='"', date_format=None, doublequote=True, escapechar=None, decimal='.')¶ Bases:
object
-
save
()¶
-
deepinsight.core.dtio module¶
-
class
deepinsight.core.dtio.
PipeToGeneratorThread
(id, consumer)¶ Bases:
threading.Thread
-
close
()¶
-
flush
()¶
-
new_buffer
()¶
-
run
()¶
-
wait_for_completion
()¶
-
write
(data)¶
-
-
class
deepinsight.core.dtio.
Python2UTF8CSVReader
(f, **kwds)¶ Bases:
object
A CSV reader which will iterate over lines in the CSV file-like binary object “f”, which is encoded in UTF-8.
-
next
()¶
-
-
class
deepinsight.core.dtio.
Python2UTF8CSVWriter
(f, **kwds)¶ Bases:
object
A CSV writer which will write rows to binary CSV file “f”, encoded in UTF-8.
It also encodes dates
-
writerow
(row)¶
-
writerows
(rows)¶
-
-
class
deepinsight.core.dtio.
Python3UTF8CSVReader
(f, **kwds)¶ Bases:
object
A CSV reader which will iterate over lines in the CSV file-like binary object “f”, which is encoded in UTF-8.
-
class
deepinsight.core.dtio.
Python3UTF8CSVWriter
(f, **kwds)¶ Bases:
object
A CSV writer which will write rows to binary CSV file “f”, encoded in UTF-8.
It also encodes dates
-
writerow
(row)¶
-
writerows
(rows)¶
-
-
exception
deepinsight.core.dtio.
TimeoutExpired
¶ Bases:
Exception
-
deepinsight.core.dtio.
new_bytesoriented_io
(data=None)¶
-
deepinsight.core.dtio.
new_utf8_csv_reader
(f, **kwargs)¶
-
deepinsight.core.dtio.
new_utf8_csv_writer
(f, **kwargs)¶
deepinsight.core.dtjson module¶
-
class
deepinsight.core.dtjson.
JSONEncoder
(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)¶ Bases:
json.encoder.JSONEncoder
-
default
(obj)¶
-
-
deepinsight.core.dtjson.
dump
(f, obj)¶ Write human readable json
We first serialize the object to avoid corrupting the file if the object is not serializable.
-
deepinsight.core.dtjson.
dump_to_filepath
(filepath, obj)¶ Write human readable json
We first serialize the object to avoid corrupting the file if the object is not serializable.
-
deepinsight.core.dtjson.
dumps
(*args, **kvargs)¶
-
deepinsight.core.dtjson.
load_from_filepath
(filepath)¶
-
deepinsight.core.dtjson.
set_default_decorator
(fn, **param)¶
deepinsight.core.intercom module¶
-
deepinsight.core.intercom.
backend_api_get_call
(path, data, **kwargs)¶ For read-only calls that can go directly to the backend
-
deepinsight.core.intercom.
backend_api_post_call
(path, data, **kwargs)¶ For read-only calls that can go directly to the backend
-
deepinsight.core.intercom.
backend_api_put_call
(path, data, **kwargs)¶ For read-only calls that can go directly to the backend
-
deepinsight.core.intercom.
backend_get_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
backend_json_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
backend_put_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
backend_stream_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
backend_void_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
create_session_if_needed
()¶
-
deepinsight.core.intercom.
get_auth_headers
()¶
-
deepinsight.core.intercom.
get_backend_url
()¶
-
deepinsight.core.intercom.
get_jek_url
()¶
-
deepinsight.core.intercom.
get_location_data
()¶
-
deepinsight.core.intercom.
has_a_jek
()¶
-
deepinsight.core.intercom.
jek_api_get_call
(path, data, **kwargs)¶ For read-only calls that can go directly to the jek
-
deepinsight.core.intercom.
jek_api_post_call
(path, data, **kwargs)¶ For read-only calls that go directly to the jek
-
deepinsight.core.intercom.
jek_get_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
jek_json_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
jek_or_backend_get_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
jek_or_backend_json_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
jek_or_backend_stream_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
jek_or_backend_void_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
jek_stream_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
jek_void_call
(path, data=None, err_msg=None, **kwargs)¶
-
deepinsight.core.intercom.
set_remote_dt
(url, api_key, no_check_certificate=False)¶
deepinsight.core.metrics module¶
-
class
deepinsight.core.metrics.
ComputedMetrics
(raw)¶ Bases:
object
Handle to the metrics of a DeepInsight object and their last computed value
-
get_all_ids
()¶ Get the identifiers of all metrics defined in this object
-
get_data
(metric_id)¶ Get the global value point of a given metric, or throws.
For a partitioned dataset, the global value is the value of the metric computed on the whole dataset (coded as partition ‘ALL’).
Parameters: metric_id – unique identifier of the metric
-
get_metric_by_id
(metric_id)¶ Retrive the info for a given metric
Parameters: metric_id – unique identifier of the metric
-
get_partition_data
(metric_id, partition)¶ Get the value point of a given metric for a given partition, or throws.
Parameters: - metric_id – unique identifier of the metric
- partition – partition identifier
-
get_partition_value
(metric_id, partition)¶ Get the value of a given metric for a given partition, or throws.
Parameters: - metric_id – unique identifier of the metric
- partition – partition identifier
-
get_value
(metric_id)¶ Get the global value of a given metric, or throws.
For a partitioned dataset, the global value is the value of the metric computed on the whole dataset (coded as partition ‘ALL’).
Parameters: metric_id – unique identifier of the metric
-
static
get_value_from_data
(data)¶ Retrieves the value from a metric point, cast in the appropriate type (str, int or float).
For other types, the value is not cast and left as a string.
Parameters: data – a value point for a metric, retrieved with deepinsight.ComputedMetrics.get_data()
ordeepinsight.ComputedMetrics.get_partition_data()
-
-
class
deepinsight.core.metrics.
MetricDataPoint
(raw)¶ Bases:
object
A value of a metric, on a partition
-
get_compute_time
()¶ Returns the time at which the value was computed
-
get_metric
()¶ Returns the metric as a JSON object
-
get_metric_id
()¶ Returns the metric’s id
-
get_partition
()¶ Returns the partition on which the value was computed
-
get_type
()¶ Returns the type of the value
-
get_value
()¶ Returns the value of the metric, as a string
-
deepinsight.core.pandasutils module¶
-
deepinsight.core.pandasutils.
getSeriesNonzero
(series)¶
-
deepinsight.core.pandasutils.
split_train_valid
(df, prop=0.8, seed=None)¶ A function that takes an input data frame df and splits it into 2 other data frames based on prop (defaults to 80% for the first one)
deepinsight.core.saved_model module¶
-
class
deepinsight.core.saved_model.
BasePredictor
(params, clf)¶ Bases:
object
Object allowing to preprocess and make predictions on a dataframe.
-
get_classes
()¶ Returns the classes from which this model will predict if a classifier, None if a regressor
-
get_conditional_output_names
()¶ Returns the name of all conditional outputs defined for this model (note: limited to binary classifiers)
-
get_proba_columns
()¶ Returns the names of the probability columns if a classifier, None if a regressor
-
-
class
deepinsight.core.saved_model.
EnsemblePredictor
(params, clf)¶ Bases:
deepinsight.core.saved_model.BasePredictor
A predictor for Ensemble models. Unlike regular models, they do not have a preprocessing and do not have feature names (various models use different features and preprocessings). Attempted calls to preprocess, get_preprocessing and get_features will therefore raise an AttributeError
-
get_prediction_dataframe
(input_df, with_prediction, with_probas, with_conditional_outputs, with_proba_percentile)¶
-
predict
(df, with_input_cols=False, with_prediction=True, with_probas=True, with_conditional_outputs=False, with_proba_percentile=False)¶ Predict a dataframe. The results are returned as a dataframe with prediction columns added.
-
-
class
deepinsight.core.saved_model.
KerasPredictor
(params, preprocessing, model, modeling_params, batch_size=100)¶
-
class
deepinsight.core.saved_model.
KerasPreprocessing
(pipeline, modeling_params, per_feature)¶ Bases:
deepinsight.core.saved_model.Preprocessing
-
preprocess
(df)¶
-
-
class
deepinsight.core.saved_model.
Model
(lookup, project_id=None, ignore_flow=False)¶ Bases:
deepinsight.core.base.Computable
This is a handle to interact with a saved model
-
activate_version
(version_id)¶ Activate a version in the model
Parameters: version_id – the unique identifier of the version to activate
-
get_definition
()¶
-
get_id
()¶ Get the unique identifier of the model
-
get_info
()¶
-
get_name
()¶ Get the name of the model
-
get_predictor
(version_id=None)¶ Returns a Predictor for the given version of this Saved Model. If no version is specified, the current active version will be used.
-
get_type
()¶ Get the type of the model, prediction or clustering
-
static
list_models
(project_id=None)¶ Retrieve the list of saved models
Parameters: project_id – key of the project from which to list models
-
list_versions
()¶ List the versions this saved model contains
-
-
class
deepinsight.core.saved_model.
ModelParams
(model_type, modeling_params, preprocessing_params, core_params, schema, user_meta, model_perf, conditional_outputs, cluster_name_map)¶ Bases:
object
-
class
deepinsight.core.saved_model.
Predictor
(params, preprocessing, features, clf)¶ Bases:
deepinsight.core.saved_model.BasePredictor
Object allowing to preprocess and make predictions on a dataframe.
-
get_features
()¶ Returns the feature names generated by this predictor’s preprocessing
-
get_preprocessing
()¶
-
predict
(df, with_input_cols=False, with_prediction=True, with_probas=True, with_conditional_outputs=False, with_proba_percentile=False)¶ Predict a dataframe. The results are returned as a dataframe with columns corresponding to the various prediction information.
Parameters: - with_input_cols – whether the input columns should also be present in the output
- with_prediction – whether the prediction column should be present
- with_probas – whether the probability columns should be present
- with_conditional_outputs – whether the conditional outputs for this model should be present (binary classif)
- with_proba_percentile – whether the percentile of the probability should be present (binary classif)
-
preprocess
(df)¶ Preprocess a dataframe. The results are returned as a numpy 2-dimensional matrix (which may be sparse). The columns of this matrix correspond to the generated features, which can be listed by the get_features property of this Predictor.
-
-
class
deepinsight.core.saved_model.
Preprocessing
(pipeline, modeling_params)¶ Bases:
object
-
preprocess
(df)¶
-
-
deepinsight.core.saved_model.
build_predictor
(model_type, model_folder, preprocessing_folder, conditional_outputs, core_params, split_desc)¶
-
deepinsight.core.saved_model.
build_predictor_for_saved_model
(model_folder, model_type, conditional_outputs)¶
-
deepinsight.core.saved_model.
is_model_prediction
(model_type)¶
deepinsight.core.schema_handling module¶
-
deepinsight.core.schema_handling.
get_schema_from_df
(df)¶ A simple function that returns a DeepInsight schema from a Pandas dataframe, to be used when writing to a dataset from a data frame
-
deepinsight.core.schema_handling.
pandas_dt_type
(dtype)¶ Return the DeepInsight type for a Pandas dtype
-
deepinsight.core.schema_handling.
parse_local_date
(s)¶
-
deepinsight.core.schema_handling.
str_to_bool
(s)¶
deepinsight.core.sql module¶
-
class
deepinsight.core.sql.
HiveExecutor
(dataset=None, database='default', connection=None)¶ Bases:
deepinsight.core.sql._HiveLikeExecutor
-
static
exec_recipe_fragment
(query, overwrite_output_schema=True, drop_partitioned_on_schema_mismatch=False, metastore_handling=None, extra_conf={})¶
-
query_to_df
(query, extra_conf={}, infer_from_schema=False, parse_dates=True, bool_as_str=False, dtypes=None, script_steps=None, script_input_schema=None, script_output_schema=None)¶
-
query_to_iter
(query, extra_conf={}, script_steps=None, script_input_schema=None, script_output_schema=None)¶
-
static
-
class
deepinsight.core.sql.
ImpalaExecutor
(dataset=None, database='default', connection=None)¶ Bases:
deepinsight.core.sql._HiveLikeExecutor
-
static
exec_recipe_fragment
(output_dataset, query, overwrite_output_schema=True, use_stream_mode=True)¶
-
query_to_df
(query, extra_conf={}, infer_from_schema=False, parse_dates=True, bool_as_str=False, dtypes=None, script_steps=None, script_input_schema=None, script_output_schema=None)¶
-
query_to_iter
(query, extra_conf={}, script_steps=None, script_input_schema=None, script_output_schema=None)¶
-
static
-
class
deepinsight.core.sql.
QueryReader
(connection, query, find_connection_from_dataset=False, db_type='sql', extra_conf={}, timeOut=600000, script_steps=None, script_input_schema=None, script_output_schema=None)¶ Bases:
object
-
get_schema
()¶
-
iter_tuples
(log_every=-1, no_header=False)¶
-
-
class
deepinsight.core.sql.
SQLExecutor
(connection=None, dataset=None)¶ Bases:
object
-
static
exec_recipe_fragment
(output_dataset, query, overwrite_output_schema=True, drop_partitioned_on_schema_mismatch=False)¶
-
query_to_df
(query, extra_conf={}, infer_from_schema=False, parse_dates=True, bool_as_str=False, dtypes=None, script_steps=None, script_input_schema=None, script_output_schema=None)¶
-
query_to_iter
(query, extra_conf={}, script_steps=None, script_input_schema=None, script_output_schema=None)¶
-
static
-
class
deepinsight.core.sql.
SparkExecutor
(dataset=None, database='default', connection=None)¶ Bases:
deepinsight.core.sql._HiveLikeExecutor
-
query_to_df
(query, extra_conf={}, infer_from_schema=False, parse_dates=True, bool_as_str=False, dtypes=None, script_steps=None, script_input_schema=None, script_output_schema=None)¶
-
query_to_iter
(query, extra_conf={}, script_steps=None, script_input_schema=None, script_output_schema=None)¶
-