deepinsight.doctor.posttraining package¶
Submodules¶
deepinsight.doctor.posttraining.model_information_handler module¶
-
class
deepinsight.doctor.posttraining.model_information_handler.
PredictionModelInformationHandler
(split_desc, core_params, preprocessing_folder, model_folder)¶ Bases:
object
-
category_possible_values
(col_name)¶ Get the list of modalities which are dummified by the preprocessing for the given column :param col_name: the name of the column :return: None if the column is not dummified else it returns the list of modalities that are dummified
-
get_clf
()¶
-
get_collector_data
()¶
-
get_full_df
()¶
-
get_modeling_params
()¶
-
get_per_feature
()¶
-
get_per_feature_col
(col_name)¶
-
get_pipeline
(with_target=True)¶
-
get_posttrain_folder
()¶
-
get_prediction_type
()¶
-
get_predictor
()¶
-
get_preproc_handler
()¶
-
get_preprocessing_params
()¶
-
get_role_of_column
(col_name)¶
-
get_sample_weight_variable
()¶
-
get_target_map
()¶
-
get_target_variable
()¶
-
get_test_df
()¶
-
get_train_df
()¶
-
get_type_of_column
(col_name)¶
-
get_weight_method
()¶
-
is_column_dummified
(col_name)¶
-
is_ensemble
()¶
-
is_keras_backend
()¶
-
is_kfolding
()¶
-
predict
(df, output_probas=True)¶
-
predict_and_concatenate
(df, output_probas=True)¶
-
prepare_for_scoring
(df)¶
-
prepare_for_scoring_full
(df)¶
-
run_binary_scoring
(df, out_folder)¶
-
run_regression_scoring
(df, out_folder)¶
-
set_keras_scoring_batches
(new_value)¶
-
with_sample_weights
()¶
-
deepinsight.doctor.posttraining.partial_depency module¶
-
class
deepinsight.doctor.posttraining.partial_depency.
PartialDependenciesProgress
(future_id, number_of_features)¶ Bases:
deepinsight.doctor.posttraining.percentage_progress.PercentageProgress
-
set_percentage_for_single_computation
(percentage, no_fail=True)¶
-
-
class
deepinsight.doctor.posttraining.partial_depency.
PartialDependenciesSaver
(folder, schema)¶ Bases:
object
-
save
(pd_result)¶
-
-
class
deepinsight.doctor.posttraining.partial_depency.
PartialDependencyComputer
(df, prediction_type, prediction_func, progress, sample_weights_col_name, max_cats=30)¶ Bases:
object
-
aggregate_less_frequent_values
(scale, distribution)¶
-
compute
(pd_feature)¶
-
-
class
deepinsight.doctor.posttraining.partial_depency.
PartialDependencyFeature
(feature_type, values, name, is_dummified=False, dummified_modalities=None, drop_missing=False)¶ Bases:
object
-
is_represented
(value)¶ Returns True if the column is not dummified, else it checks if the value/modality is known by the model, e.g. if the preprocessing dummify this modality :param value: modality of the feature :return: boolean
-
-
class
deepinsight.doctor.posttraining.partial_depency.
PartialDependencyResult
(pd_feature, scale, distribution, partial_dependence, indices_to_drop=None, unrepresented_modalities=None)¶ Bases:
object
-
deepinsight.doctor.posttraining.partial_depency.
compute
(job_id, split_desc, core_params, preprocessing_folder, model_folder, computation_params)¶
deepinsight.doctor.posttraining.percentage_progress module¶
deepinsight.doctor.posttraining.subpopulation module¶
-
deepinsight.doctor.posttraining.subpopulation.
command
(job_id, split_desc, core_params, preprocessing_folder, model_folder, computation_parameters)¶
-
deepinsight.doctor.posttraining.subpopulation.
compute_binary_subpopulation_metrics
(subpop_df, model_handler)¶
-
deepinsight.doctor.posttraining.subpopulation.
get_computation_parameter
(key, computation_parameters)¶
-
deepinsight.doctor.posttraining.subpopulation.
get_type_of_column
(col_name, model_handler)¶