deepinsight.doctor.posttraining package

Submodules

deepinsight.doctor.posttraining.model_information_handler module

class deepinsight.doctor.posttraining.model_information_handler.PredictionModelInformationHandler(split_desc, core_params, preprocessing_folder, model_folder)

Bases: object

category_possible_values(col_name)

Get the list of modalities which are dummified by the preprocessing for the given column :param col_name: the name of the column :return: None if the column is not dummified else it returns the list of modalities that are dummified

get_clf()
get_collector_data()
get_full_df()
get_modeling_params()
get_per_feature()
get_per_feature_col(col_name)
get_pipeline(with_target=True)
get_posttrain_folder()
get_prediction_type()
get_predictor()
get_preproc_handler()
get_preprocessing_params()
get_role_of_column(col_name)
get_sample_weight_variable()
get_target_map()
get_target_variable()
get_test_df()
get_train_df()
get_type_of_column(col_name)
get_weight_method()
is_column_dummified(col_name)
is_ensemble()
is_keras_backend()
is_kfolding()
predict(df, output_probas=True)
predict_and_concatenate(df, output_probas=True)
prepare_for_scoring(df)
prepare_for_scoring_full(df)
run_binary_scoring(df, out_folder)
run_regression_scoring(df, out_folder)
set_keras_scoring_batches(new_value)
with_sample_weights()

deepinsight.doctor.posttraining.partial_depency module

class deepinsight.doctor.posttraining.partial_depency.PartialDependenciesProgress(future_id, number_of_features)

Bases: deepinsight.doctor.posttraining.percentage_progress.PercentageProgress

set_percentage_for_single_computation(percentage, no_fail=True)
class deepinsight.doctor.posttraining.partial_depency.PartialDependenciesSaver(folder, schema)

Bases: object

save(pd_result)
class deepinsight.doctor.posttraining.partial_depency.PartialDependencyComputer(df, prediction_type, prediction_func, progress, sample_weights_col_name, max_cats=30)

Bases: object

aggregate_less_frequent_values(scale, distribution)
compute(pd_feature)
class deepinsight.doctor.posttraining.partial_depency.PartialDependencyFeature(feature_type, values, name, is_dummified=False, dummified_modalities=None, drop_missing=False)

Bases: object

is_represented(value)

Returns True if the column is not dummified, else it checks if the value/modality is known by the model, e.g. if the preprocessing dummify this modality :param value: modality of the feature :return: boolean

class deepinsight.doctor.posttraining.partial_depency.PartialDependencyResult(pd_feature, scale, distribution, partial_dependence, indices_to_drop=None, unrepresented_modalities=None)

Bases: object

deepinsight.doctor.posttraining.partial_depency.compute(job_id, split_desc, core_params, preprocessing_folder, model_folder, computation_params)

deepinsight.doctor.posttraining.percentage_progress module

class deepinsight.doctor.posttraining.percentage_progress.PercentageProgress(future_id)

Bases: object

set_percentage(percentage, no_fail=True)

deepinsight.doctor.posttraining.subpopulation module

deepinsight.doctor.posttraining.subpopulation.command(job_id, split_desc, core_params, preprocessing_folder, model_folder, computation_parameters)
deepinsight.doctor.posttraining.subpopulation.compute_binary_subpopulation_metrics(subpop_df, model_handler)
deepinsight.doctor.posttraining.subpopulation.get_computation_parameter(key, computation_parameters)
deepinsight.doctor.posttraining.subpopulation.get_type_of_column(col_name, model_handler)

Module contents