deepinsight.doctor.prediction package¶
Submodules¶
deepinsight.doctor.prediction.classification_fit module¶
-
class
deepinsight.doctor.prediction.classification_fit.
DecisionTreeClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'DECISION_TREE_CLASSIFICATION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
ExtraTreesClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'EXTRA_TREES'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
GBTClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'GBT_CLASSIFICATION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
KNNClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'KNN'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
supports_weight
= False¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
LARSClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'LARS'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
supports_weight
= False¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
LogisticRegClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'LOGISTIC_REGRESSION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
NeuralNetworkClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'NEURAL_NETWORK'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
supports_weight
= False¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
RFClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'RANDOM_FOREST_CLASSIFICATION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
SGDClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'SGD_CLASSIFICATION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
SVCClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'SVC_CLASSIFICATION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
ScikitClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'SCIKIT_MODEL'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.classification_fit.
XGBClassification
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'XGBOOST_CLASSIFICATION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
deepinsight.doctor.prediction.classification_fit.
classification_fit
(modeling_params, split_desc, transformed_train, prediction_type, m_folder=None, gridsearch_done_fn=None, target_map=None, with_sample_weight=False, with_class_weight=True, calibration=None)¶ Returns (clf, actual_params, prepared_train_X, initial_intrinsic_perf_data) Extracts the best estimator for grid search ones
-
deepinsight.doctor.prediction.classification_fit.
classification_fit_ensemble
(modeling_params, core_params, split_desc, data, target, sample_weight=None)¶ Returns (clf, actual_params, prepared_train_X, initial_intrinsic_perf_data) Extracts the best estimator for grid search ones
-
deepinsight.doctor.prediction.classification_fit.
get_class_weight_dict
(train_y)¶
-
deepinsight.doctor.prediction.classification_fit.
register_classification_algorithm
(algorithm)¶
deepinsight.doctor.prediction.classification_scoring module¶
-
class
deepinsight.doctor.prediction.classification_scoring.
BinaryClassificationModelScorer
(modeling_params, clf, out_folder, preds, probas, valid_y, target_map, valid=None, test_df_index=None, sample_weight=None, ignore_num_classes=False)¶ Bases:
deepinsight.doctor.prediction.scoring_base.PredictionModelScorer
-
score
()¶
-
-
class
deepinsight.doctor.prediction.classification_scoring.
CVBinaryClassificationModelScorer
(scorers)¶ Bases:
object
-
score
()¶
-
-
class
deepinsight.doctor.prediction.classification_scoring.
CVMulticlassModelScorer
(scorers)¶ Bases:
object
-
score
()¶
-
-
class
deepinsight.doctor.prediction.classification_scoring.
ClassificationModelIntrinsicScorer
(modeling_params, clf, train_X, train_y, pipeline, out_folder, prepared_X, iipd, calibrate_proba)¶ Bases:
deepinsight.doctor.prediction.scoring_base.PredictionModelIntrinsicScorer
-
score
()¶
-
-
class
deepinsight.doctor.prediction.classification_scoring.
MulticlassModelScorer
(modeling_params, clf, out_folder, preds, probas, valid_y, target_map=None, valid=None, test_df_index=None, sample_weight=None, ignore_num_classes=False)¶ Bases:
deepinsight.doctor.prediction.scoring_base.PredictionModelScorer
-
get_multiclass_confusion_matrix
()¶
-
score
(optimize_threshold=False)¶
-
-
deepinsight.doctor.prediction.classification_scoring.
binary_classif_scoring_add_percentile_and_cond_outputs
(pred_df, recipe_desc, model_folder, cond_outputs, target_map)¶
-
deepinsight.doctor.prediction.classification_scoring.
binary_classification_predict
(clf, pipeline, modeling_params, preprocessing_params, target_map, threshold, data, output_probas=True, ensemble_has_target=False)¶ returns the predicted dataframe. Used by the scoring recipe only at the moment
-
deepinsight.doctor.prediction.classification_scoring.
binary_classification_predict_ensemble
(clf, target_map, threshold, data, output_probas=True, has_target=False)¶ returns (prediction df - one column, probas df)
-
deepinsight.doctor.prediction.classification_scoring.
binary_classification_predict_single
(clf, pipeline, modeling_params, preprocessing_params, target_map, threshold, data, output_probas=True)¶ returns (prediction df - one column, probas df)
-
deepinsight.doctor.prediction.classification_scoring.
binary_classification_scorer_with_valid
(modeling_params, clf, valid, out_folder, test_df_index, target_map, with_sample_weight=False)¶
-
deepinsight.doctor.prediction.classification_scoring.
compute_otimized_threshold
(valid_y, probas, modeling_params, sample_weight=None)¶
-
deepinsight.doctor.prediction.classification_scoring.
format_all_proba_density
(classes, target_map, probas, valid_y, sample_weight=None)¶
-
deepinsight.doctor.prediction.classification_scoring.
format_proba_density
(data, sample_weight=None)¶
-
deepinsight.doctor.prediction.classification_scoring.
is_proba_aware
(algorithm, clf)¶
-
deepinsight.doctor.prediction.classification_scoring.
multiclass_predict
(clf, pipeline, modeling_params, preprocessing_params, target_map, data, output_probas=True, ensemble_has_target=False)¶ returns the predicted dataframe. Used by the scoring recipe and lambda
-
deepinsight.doctor.prediction.classification_scoring.
multiclass_predict_ensemble
(clf, target_map, data, output_probas, has_target=False)¶
-
deepinsight.doctor.prediction.classification_scoring.
multiclass_predict_single
(clf, pipeline, modeling_params, preprocessing_params, target_map, data, output_probas)¶
-
deepinsight.doctor.prediction.classification_scoring.
multiclass_scorer_with_valid
(modeling_params, clf, valid, out_folder, test_df_index, target_map=None, with_sample_weight=False)¶
deepinsight.doctor.prediction.common module¶
-
class
deepinsight.doctor.prediction.common.
PredictionAlgorithm
¶ Bases:
object
-
algorithm
= None¶
-
get_gridsearcher
(modeling_params=None, column_labels=None, m_folder=None, prediction_type='REGRESSION', target_map=None, unprocessed=None)¶
-
get_output_params
(modeling_params, clf, fit_params)¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶ - Given the modeling & input params outputs a tuple containing
- a grid (sklearn names)
- a classifier (sklearn object)
- optional fit_params to be passed to classifier.fit() afterwords
Parameters: - ingrid (dict) – Input parameter grid (DKU names)
- modeling_params (dict) – Modeling params for current model
- prediction_type (dict) – Prediction type
Returns: grid, base_clf, fit_params
Return type: tuple(dict, object, dict)
-
output_params
(ret, clf, fit_params)¶ Given a fitted classifier, outputs a dict of algorithm params to be stored back to DKU :param ret: Input parameter grid (DKU names) :type ret: dict :param clf: Sklearn Classifier (fitted) :type clf: dict :param fit_params: Fit params :type fit_params: dict :return: Parameter dict (resolved & others) :rtype: dict
-
supports_weight
= True¶
-
-
deepinsight.doctor.prediction.common.
build_cv
(modeling_params, column_labels, is_classification)¶
-
deepinsight.doctor.prediction.common.
dump_pretrain_info
(clf, train_X, train_y, weight=None, calibration=False)¶
-
deepinsight.doctor.prediction.common.
get_grid_scorer
(modeling_params, prediction_type, target_map=None, unprocessed=None, custom_make_scorer=None)¶
-
deepinsight.doctor.prediction.common.
get_grid_scorers
(modeling_params, prediction_type, target_map=None, unprocessed=None, custom_make_scorer=None)¶ Returns a scorer, ie a function with signature(clf, X, y)
-
deepinsight.doctor.prediction.common.
get_ingrid
(modeling_params, algorithm)¶ Returns the grid object from the pre-train modeling params for a given algorithm
-
deepinsight.doctor.prediction.common.
get_initial_intrinsic_perf_data
(train_X, is_sparse)¶
-
deepinsight.doctor.prediction.common.
get_max_features
(ingrid)¶
-
deepinsight.doctor.prediction.common.
get_selection_mode
(max_features)¶
-
deepinsight.doctor.prediction.common.
get_threshold_optim_function
(modeling_params)¶ Returns a function that takes (y_true, y_pred) and a ‘greater_is_better’
-
deepinsight.doctor.prediction.common.
greater_is_better
(metric, custom_evaluation_metric_gib)¶
-
deepinsight.doctor.prediction.common.
make_cost_matrix_score
(metrics_params)¶
-
deepinsight.doctor.prediction.common.
make_lift_score
(metrics_params)¶
-
deepinsight.doctor.prediction.common.
pivot_property_to_list
(o, proplist)¶
-
deepinsight.doctor.prediction.common.
prepare_multiframe
(train_X, modeling_params)¶
-
deepinsight.doctor.prediction.common.
python2_friendly_exec
(code, ctx_global, ctx_local)¶
-
deepinsight.doctor.prediction.common.
replace_value_by_empty
(element, value=0)¶
-
deepinsight.doctor.prediction.common.
safe_del
(dic, key)¶
-
deepinsight.doctor.prediction.common.
safe_positive_int
(x)¶
-
deepinsight.doctor.prediction.common.
save_prediction_model
(clf, out_params, listener, update_fn, folder)¶
-
deepinsight.doctor.prediction.common.
scikit_model
(modeling_params)¶
-
deepinsight.doctor.prediction.common.
train_test_split
(X, y, test_size, random_state)¶
-
deepinsight.doctor.prediction.common.
weighted_quantile
(values, weights, target_rate, cumsum_weights=None)¶
deepinsight.doctor.prediction.dt_xgboost module¶
-
class
deepinsight.doctor.prediction.dt_xgboost.
DTXGBClassifier
(max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective='binary:logistic', booster='gbtree', gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, random_state=0, missing=None, n_jobs=-1, tree_method='auto')¶ Bases:
xgboost.sklearn.XGBClassifier
-
class_weight
= None¶
-
fit
(X, y, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True, sample_weight=None, xgb_model=None)¶
-
set_params
(**params)¶
-
-
class
deepinsight.doctor.prediction.dt_xgboost.
DTXGBRegressor
(max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective='reg:linear', booster='gbtree', gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, random_state=0, missing=None, n_jobs=1, tree_method='auto')¶ Bases:
xgboost.sklearn.XGBRegressor
-
fit
(X, y, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True, sample_weight=None, xgb_model=None)¶
-
set_params
(**params)¶
-
-
deepinsight.doctor.prediction.dt_xgboost.
get_xgboost_scorer
(metric_name, prediction_type)¶
deepinsight.doctor.prediction.ensembles module¶
-
class
deepinsight.doctor.prediction.ensembles.
AverageEnsembler
¶ Bases:
deepinsight.doctor.prediction.ensembles.Ensembler
-
ensemble_predictions
(preds)¶
-
fit
(preds, y, sample_weight=None)¶
-
-
class
deepinsight.doctor.prediction.ensembles.
ClassificationEnsembler
(n_classes)¶ Bases:
deepinsight.doctor.prediction.ensembles.Ensembler
-
ensemble_predictions
(preds)¶
-
ensemble_probas
(preds)¶
-
fit
(preds, y, sample_weight=None)¶
-
inputs_probas
()¶
-
outputs_probas
()¶
-
-
class
deepinsight.doctor.prediction.ensembles.
EnsembleModel
(core_params, ensemble_params, scorable_pipelines, pipelines_with_target, clfs, ensembler, thresholds=None)¶ Bases:
object
-
predict
(X)¶
-
predict_as_dataframe
(X)¶
-
predict_proba
(X)¶
-
predict_proba_as_dataframe
(X)¶
-
set_with_target_pipelines_mode
(use_with_target)¶
-
-
class
deepinsight.doctor.prediction.ensembles.
EnsembleRegressor
(ensemble_params, core_params, split_desc)¶ Bases:
object
-
create_scorable_pipelines
(collectors)¶
-
fit
(X, y, sample_weight=None)¶ Returns a pair (clf, train_X), where clf is the trained EnsembleModel and train_X is the training data ndarray obtained from the given multiframe
-
fit_pipelines
(X)¶
-
-
class
deepinsight.doctor.prediction.ensembles.
Ensembler
¶ Bases:
object
-
ensemble_predictions
(preds)¶
-
fit
(preds, y, sample_weight=None)¶
-
inputs_probas
()¶
-
outputs_probas
()¶
-
-
class
deepinsight.doctor.prediction.ensembles.
LinearEnsembler
¶ Bases:
deepinsight.doctor.prediction.ensembles.Ensembler
-
ensemble_predictions
(preds)¶
-
fit
(preds, y, sample_weight=None)¶
-
-
class
deepinsight.doctor.prediction.ensembles.
LogisticClassifEnsembler
(n_classes)¶ Bases:
deepinsight.doctor.prediction.ensembles.ClassificationEnsembler
-
ensemble_predictions
(preds)¶
-
ensemble_probas
(preds)¶
-
fit
(preds, y, sample_weight=None)¶
-
-
class
deepinsight.doctor.prediction.ensembles.
LogisticProbaEnsembler
(n_classes)¶ Bases:
deepinsight.doctor.prediction.ensembles.ProbabilisticEnsembler
-
coerce_probas
(probas)¶
-
ensemble_predictions
(preds)¶
-
ensemble_probas
(preds)¶
-
fit
(preds, y, sample_weight=None)¶
-
-
class
deepinsight.doctor.prediction.ensembles.
MedianEnsembler
¶ Bases:
deepinsight.doctor.prediction.ensembles.Ensembler
-
ensemble_predictions
(preds)¶
-
fit
(preds, y, sample_weight=None)¶
-
-
class
deepinsight.doctor.prediction.ensembles.
ProbabilisticAverageEnsembler
(n_classes)¶ Bases:
deepinsight.doctor.prediction.ensembles.ProbabilisticEnsembler
-
ensemble_predictions
(preds)¶
-
ensemble_probas
(probas)¶
-
fit
(preds, y, sample_weight=None)¶
-
-
class
deepinsight.doctor.prediction.ensembles.
ProbabilisticEnsembler
(n_classes)¶ Bases:
deepinsight.doctor.prediction.ensembles.Ensembler
-
ensemble_probas
(probas)¶
-
inputs_probas
()¶
-
outputs_probas
()¶
-
-
class
deepinsight.doctor.prediction.ensembles.
VotingEnsembler
(n_classes)¶ Bases:
deepinsight.doctor.prediction.ensembles.ClassificationEnsembler
-
ensemble_predictions
(preds)¶
-
ensemble_probas
(preds)¶
-
fit
(preds, y, sample_weight=None)¶
-
-
deepinsight.doctor.prediction.ensembles.
ensemble_from_fitted
(core_params, ensemble_params, prep_folders, model_folders, train, with_sample_weight=False, with_class_weight=False)¶
-
deepinsight.doctor.prediction.ensembles.
extract_probas
(p_df, target_map)¶
-
deepinsight.doctor.prediction.ensembles.
get_classifier_ensembler
(n_classes, ensemble_params, preds, y, sample_weight=None, with_class_weight=False)¶
-
deepinsight.doctor.prediction.ensembles.
get_probabilistic_ensembler
(n_classes, ensemble_params, probas, y, sample_weight=None, with_class_weight=False)¶
-
deepinsight.doctor.prediction.ensembles.
get_regression_ensembler
(ensemble_params, preds, y, sample_weight=None)¶
-
deepinsight.doctor.prediction.ensembles.
get_target_map
(ensemble_params)¶
-
deepinsight.doctor.prediction.ensembles.
is_probabilistic
(ensemble_params)¶
deepinsight.doctor.prediction.feature_selection module¶
-
class
deepinsight.doctor.prediction.feature_selection.
ClassificationCorrelationSelector
(params)¶ Bases:
deepinsight.doctor.prediction.feature_selection.DropSelector
-
get_pruned_names
(mf, target)¶
-
-
class
deepinsight.doctor.prediction.feature_selection.
DropFeatureSelection
(kept_columns)¶ Bases:
deepinsight.doctor.prediction.feature_selection.FeatureSelection
-
get_method
()¶
-
get_selection_params
()¶
-
transform
(mf)¶
-
-
class
deepinsight.doctor.prediction.feature_selection.
DropSelector
¶ Bases:
deepinsight.doctor.prediction.feature_selection.FeatureSelector
-
fit
(mf, target)¶
-
get_pruned_names
(mf, target)¶
-
-
class
deepinsight.doctor.prediction.feature_selection.
FeatureSelection
¶ Bases:
object
-
get_method
()¶
-
get_selection_params
()¶
-
to_json
()¶
-
transform
(mf)¶
-
-
class
deepinsight.doctor.prediction.feature_selection.
FeatureSelectionStep
(params, prediction_type)¶ Bases:
deepinsight.doctor.preprocessing.dataframe_preprocessing.Step
-
static
build_selection
(method, selection_params)¶
-
fit_and_process
(input_df, current_mf, output_ppr, generated_features_mapping)¶
-
init_resources
(resources_handler)¶
-
process
(input_df, current_mf, output_ppr, generated_features_mapping)¶
-
static
-
class
deepinsight.doctor.prediction.feature_selection.
FeatureSelector
¶ Bases:
object
-
fit
(mf, target)¶
-
-
class
deepinsight.doctor.prediction.feature_selection.
LassoSelector
(prediction_type, params)¶ Bases:
deepinsight.doctor.prediction.feature_selection.DropSelector
-
get_pruned_names
(mf, target)¶
-
-
class
deepinsight.doctor.prediction.feature_selection.
NoopFeatureSelection
¶ Bases:
deepinsight.doctor.prediction.feature_selection.FeatureSelection
-
get_method
()¶
-
get_selection_params
()¶
-
transform
(mf)¶
-
-
class
deepinsight.doctor.prediction.feature_selection.
PCAFeatureSelection
(sparse, input_names, rot, explained_variance=None, means=None)¶ Bases:
deepinsight.doctor.prediction.feature_selection.FeatureSelection
-
get_method
()¶
-
get_selection_params
()¶
-
transform
(mf)¶
-
-
class
deepinsight.doctor.prediction.feature_selection.
PCASelector
(params)¶ Bases:
deepinsight.doctor.prediction.feature_selection.FeatureSelector
-
fit
(mf, target)¶
-
n_features_from_variance
(var)¶
-
static
use_sparse_pca
(mf)¶
-
-
class
deepinsight.doctor.prediction.feature_selection.
RandomForestSelector
(prediction_type, params)¶ Bases:
deepinsight.doctor.prediction.feature_selection.DropSelector
-
get_pruned_names
(mf, target)¶
-
-
class
deepinsight.doctor.prediction.feature_selection.
RegressionCorrelationSelector
(params)¶ Bases:
deepinsight.doctor.prediction.feature_selection.DropSelector
-
static
dense_abs_cor
(dense, target, t_mean, t_std)¶
-
get_pruned_names
(mf, target)¶
-
static
sparse_abs_cor
(sparse, target_sparse, t_mean, t_std)¶
-
static
-
deepinsight.doctor.prediction.feature_selection.
extract_features
(mf, sparse=False)¶
-
deepinsight.doctor.prediction.feature_selection.
get_feature_selector
(params, prediction_type)¶
deepinsight.doctor.prediction.keras_evaluation_recipe module¶
Execute an evaluation recipe in Keras mode Must be called in a Flow environment
-
deepinsight.doctor.prediction.keras_evaluation_recipe.
main
(model_folder, input_dataset_smartname, output_dataset_smartname, metrics_dataset_smartname, recipe_desc, script, preparation_output_schema, cond_outputs=None)¶
deepinsight.doctor.prediction.keras_scoring_recipe module¶
Execute a prediction scoring recipe in Keras mode Must be called in a Flow environment
-
deepinsight.doctor.prediction.keras_scoring_recipe.
main
(model_folder, input_dataset_smartname, output_dataset_smartname, recipe_desc, script, preparation_output_schema, cond_outputs=None)¶
deepinsight.doctor.prediction.lars module¶
deepinsight.doctor.prediction.prediction_model_serialization module¶
-
class
deepinsight.doctor.prediction.prediction_model_serialization.
BinaryModelSerializer
(columns, clf, modeling_params, run_folder, target_mapping, calibrate_proba=False)¶ Bases:
deepinsight.doctor.prediction.prediction_model_serialization.ModelSerializer
-
get_calibrator
()¶
-
get_model
()¶
-
-
class
deepinsight.doctor.prediction.prediction_model_serialization.
ModelSerializer
(columns, clf, modeling_params, run_folder, target_mapping)¶ Bases:
object
-
get_calibrator
()¶
-
get_model
()¶ Returns the serializable model for this model, which includes both the algorithm name to serialize and the model data
-
serialize
()¶ - Dump all relevant model-related information to the run_folder. This includes
- the serialized model
- the final preprocessed column names, in the order in which they are used by the model
- in the case of binary or multiclass classification, the class mapping
-
-
class
deepinsight.doctor.prediction.prediction_model_serialization.
MulticlassModelSerializer
(columns, clf, modeling_params, run_folder, target_mapping, calibrate_proba=False)¶ Bases:
deepinsight.doctor.prediction.prediction_model_serialization.ModelSerializer
-
get_calibrator
()¶
-
get_model
()¶
-
-
class
deepinsight.doctor.prediction.prediction_model_serialization.
RegressionModelSerializer
(columns, clf, modeling_params, run_folder)¶ Bases:
deepinsight.doctor.prediction.prediction_model_serialization.ModelSerializer
-
get_model
()¶
-
-
class
deepinsight.doctor.prediction.prediction_model_serialization.
SerializableModel
(name, model)¶ Bases:
object
deepinsight.doctor.prediction.reg_evaluation_recipe module¶
Execute an evaluation recipe in PyRegular mode Must be called in a Flow environment
-
deepinsight.doctor.prediction.reg_evaluation_recipe.
add_evaluation_columns
(prediction_type, pred_df, y, target_mapping)¶
-
deepinsight.doctor.prediction.reg_evaluation_recipe.
compute_binary_classification_metrics
(modeling_params, valid_y, preds, probas=None, sample_weight=None, unprocessed=None)¶
-
deepinsight.doctor.prediction.reg_evaluation_recipe.
compute_metrics_df
(prediction_type, inv_map, modeling_params, output_df, recipe_desc, y, unprocessed, sample_weight=None)¶
-
deepinsight.doctor.prediction.reg_evaluation_recipe.
compute_multiclass_metrics
(modeling_params, valid_y, preds, probas=None, sample_weight=None, unprocessed=None)¶
-
deepinsight.doctor.prediction.reg_evaluation_recipe.
compute_regression_metrics
(modeling_params, valid_y, preds, sample_weight=None, unprocessed=None)¶
-
deepinsight.doctor.prediction.reg_evaluation_recipe.
main
(model_folder, input_dataset_smartname, output_dataset_smartname, metrics_dataset_smartname, recipe_desc, script, preparation_output_schema, cond_outputs=None)¶
deepinsight.doctor.prediction.reg_scoring_recipe module¶
Execute a prediction scoring recipe in PyRegular mode Must be called in a Flow environment
-
deepinsight.doctor.prediction.reg_scoring_recipe.
main
(model_folder, input_dataset_smartname, output_dataset_smartname, recipe_desc, script, preparation_output_schema, cond_outputs=None)¶
deepinsight.doctor.prediction.reg_train_recipe module¶
Execute a prediction training recipe in PyRegular mode Must be called in a Flow environment
-
deepinsight.doctor.prediction.reg_train_recipe.
main
(exec_folder, selection_state_folder, operation_mode)¶ The whole execution of the saved model train takes place in a single folder ?
deepinsight.doctor.prediction.regression_fit module¶
-
class
deepinsight.doctor.prediction.regression_fit.
DecisionTreeRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'DECISION_TREE_REGRESSION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
ExtraTreesRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'EXTRA_TREES'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
GBTRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'GBT_REGRESSION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
KNNRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'KNN'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
supports_weight
= False¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
LARSRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'LARS'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
supports_weight
= False¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
LassoRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'LASSO_REGRESSION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
supports_weight
= False¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
LeastSquareRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'LEASTSQUARE_REGRESSION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
NeuralNetworkRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'NEURAL_NETWORK'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
supports_weight
= False¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
RFRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'RANDOM_FOREST_REGRESSION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
RidgeRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'RIDGE_REGRESSION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
SGDRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'SGD_REGRESSION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
SVMRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'SVM_REGRESSION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
ScikitRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'SCIKIT_MODEL'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
-
class
deepinsight.doctor.prediction.regression_fit.
XGBoostRegression
¶ Bases:
deepinsight.doctor.prediction.common.PredictionAlgorithm
-
algorithm
= 'XGBOOST_REGRESSION'¶
-
model_from_params
(ingrid, modeling_params, prediction_type)¶
-
output_params
(ret, clf, fit_params)¶
-
supports_weight
= True¶
-
-
deepinsight.doctor.prediction.regression_fit.
register_regression_algorithm
(algorithm)¶
-
deepinsight.doctor.prediction.regression_fit.
regression_fit_ensemble
(modeling_params, core_params, split_desc, train_X, train_y, sample_weight=None)¶
-
deepinsight.doctor.prediction.regression_fit.
regression_fit_single
(modeling_params, split_desc, transformed_train, m_folder=None, gridsearch_done_fn=None, with_sample_weight=False)¶ Returns (clf, actual_params, prepared_train_X, initial_intrinsic_perf_data) Extracts the best estimator for grid search ones
deepinsight.doctor.prediction.regression_scoring module¶
-
class
deepinsight.doctor.prediction.regression_scoring.
CVRegressionModelScorer
(scorers)¶ Bases:
object
-
score
()¶
-
-
class
deepinsight.doctor.prediction.regression_scoring.
Denormalizer
(rescalers)¶ Bases:
object
Post-processing on the coefficients of a linear model. Scales back coefficients, intercepts and std thereof to maintain homogeneity with the original variable.
-
denormalize_coef
(feature_name, coef_value)¶
-
denormalize_feature_value
(feature_name, feature_value)¶
-
denormalize_intercept
(intercept_value, feature_names, coef_values)¶
-
denormalize_intercept_stderr
(intercept_stderr, feature_names, coef_stderr_values)¶
-
-
class
deepinsight.doctor.prediction.regression_scoring.
GradientBoostingSummaryBuilder
(model, featureNames, rescalers, is_regression, max_nodes)¶ Bases:
object
-
build
()¶
-
-
class
deepinsight.doctor.prediction.regression_scoring.
PartialDependencyPlotBuilder
(model, train_X, train_y, rescalers, offset=False)¶ Bases:
object
-
build
()¶
-
-
class
deepinsight.doctor.prediction.regression_scoring.
RandomForestSummaryBuilder
(model, featureNames, rescalers, is_regression, max_nodes)¶ Bases:
object
-
build
()¶
-
-
class
deepinsight.doctor.prediction.regression_scoring.
RegressionModelIntrinsicScorer
(modeling_params, clf, train_X, train_y, pipeline, out_folder, prepared_X, iipd)¶ Bases:
deepinsight.doctor.prediction.scoring_base.PredictionModelIntrinsicScorer
-
score
()¶
-
-
class
deepinsight.doctor.prediction.regression_scoring.
RegressionModelScorer
(modeling_params, clf, preds, target, out_folder, valid, input_df_index, sample_weight)¶ Bases:
deepinsight.doctor.prediction.scoring_base.PredictionModelScorer
-
compute_predicted_data
(preds, valid_X_index)¶
-
get_regression_performance
(valid_y, preds, sample_weight=None)¶
-
score
()¶
-
-
class
deepinsight.doctor.prediction.regression_scoring.
TreeSummaryBuilder
(model, feature_names, rescalers, is_regression)¶ Bases:
object
-
build
()¶
-
-
class
deepinsight.doctor.prediction.regression_scoring.
ZeroEstimator
¶ Bases:
sklearn.base.BaseEstimator
-
fit
(X, y)¶
-
predict
(X)¶
-
-
deepinsight.doctor.prediction.regression_scoring.
compute_metrics
(valid_y, preds, sample_weight=None)¶
-
deepinsight.doctor.prediction.regression_scoring.
make_tree_data
(extract, feature_names, rescalers, is_regression)¶
-
deepinsight.doctor.prediction.regression_scoring.
pearson_correlation
(valid_y, preds, sample_weight=None)¶
-
deepinsight.doctor.prediction.regression_scoring.
regression_predict
(clf, pipeline, modeling_params, data, ensemble_has_target=False)¶ returns the predicted dataframe. Used by the scoring recipe only at the moment
-
deepinsight.doctor.prediction.regression_scoring.
regression_predict_ensemble
(clf, data, has_target=False)¶
-
deepinsight.doctor.prediction.regression_scoring.
regression_predict_single
(clf, pipeline, modeling_params, data)¶
-
deepinsight.doctor.prediction.regression_scoring.
regression_scorer_with_valid
(modeling_params, clf, valid, fold_mfolder, input_df_index, with_sample_weight=False)¶
-
deepinsight.doctor.prediction.regression_scoring.
set_n_features_v0_18_v0_19
(m, n)¶
deepinsight.doctor.prediction.scoring_base module¶
-
class
deepinsight.doctor.prediction.scoring_base.
PredictionModelIntrinsicScorer
(modeling_params, clf, train_X, train_y, out_folder, prepared_X)¶ Bases:
object
-
get_rf_raw_importance
(clf, ret)¶
-
-
class
deepinsight.doctor.prediction.scoring_base.
PredictionModelScorer
(modeling_params, clf, valid)¶ Bases:
object
-
add_metric
(measure, value, description='')¶
-
get_variables_importance
()¶
-
-
deepinsight.doctor.prediction.scoring_base.
compute_lm_significance
(clf, coefs, intercept, prepared_X, train_y, regression=True)¶ Returns (t_test, p_val)
-
deepinsight.doctor.prediction.scoring_base.
trim_curve
(curve, distance_threshold=0.05)¶ Given a list of P_k=(x,y) curve points, remove points until there is no segemnt P_k , P_k+1 that are smaller than distance_threshold.